An ellipsoid method for minimization of convex function

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An improved ellipsoid method for solving convex differentiable optimization problems

We consider the problem of solving convex differentiable problems with simple constraints. We devise an improved ellipsoid method that relies on improved deep cuts exploiting the differentiability property of the objective function as well as the ability to compute an orthogonal projection onto the feasible set. The linear rate of convergence of the objective function values sequence is proven ...

متن کامل

Minimization of an M-convex Function

We study the minimization of an M-convex function introduced by Murota. It is shown that any vector in the domain can be easily separated from a minimizer of the function. Based on this property, we develop a polynomial time algorithm.

متن کامل

An Extragradient-Based Alternating Direction Method for Convex Minimization

In this paper, we consider the problem of minimizing the sum of two convex functions subject to linear linking constraints. The classical alternating direction type methods usually assume that the two convex functions have relatively easy proximal mappings. However, many problems arising from statistics, image processing and other fields have the structure that only one of the two functions has...

متن کامل

The Newton Bracketing Method for Convex Minimization

An iterative method for the minimization of convex functions f : R → R, called a Newton Bracketing (NB) method, is presented. The NB method proceeds by using Newton iterations to improve upper and lower bounds on the minimum value. The NB method is valid for n = 1, and in some cases for n > 1 (sufficient conditions given here). The NB method is applied to large scale Fermat–Weber location probl...

متن کامل

Alternating Proximal Gradient Method for Convex Minimization

In this paper, we propose an alternating proximal gradient method that solves convex minimization problems with three or more separable blocks in the objective function. Our method is based on the framework of alternating direction method of multipliers. The main computational effort in each iteration of the proposed method is to compute the proximal mappings of the involved convex functions. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: NaUKMA Research Papers. Computer Science

سال: 2019

ISSN: 2617-7323,2617-3808

DOI: 10.18523/2617-3808.2019.2.16-21